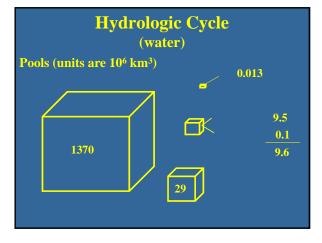

Properties of Ecosystems

- The <u>flow of energy</u> powers ecosystems.
- <u>Matter cycles</u> between the biotic and abiotic world.

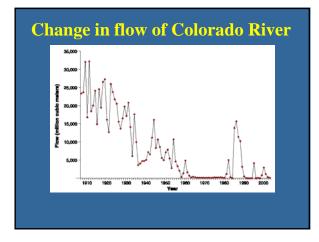
Understanding Ecosystem Terms

Mean Residence Time

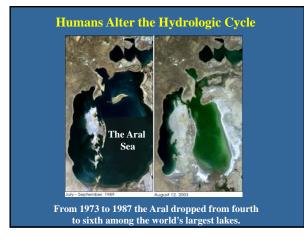
For a system in <u>dynamic equilibrium</u>:

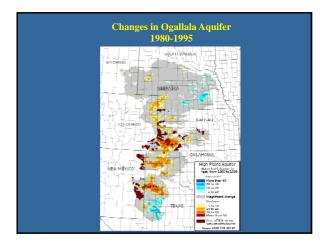

<u>Mean Residence Time</u> $(\tau) = \text{stock} / \text{inflow or outflow}$

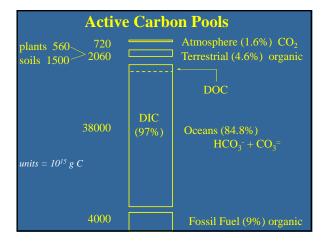
 $\tau = Average \ length \ of \ time \ a \ given \ atom \ or \ molecule spends \ in \ the \ system \ between \ entering \ and \ leaving.$

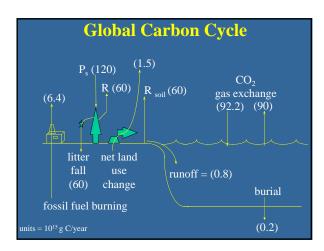

Importance of Nutrient Cycles

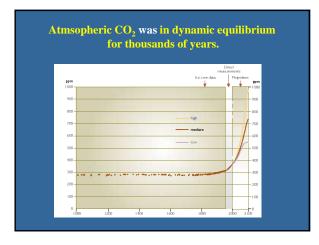
Hydrologic Cycle (water)


Read pages 36 – 37 in textbook

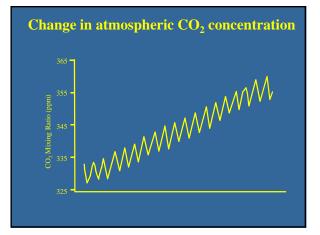


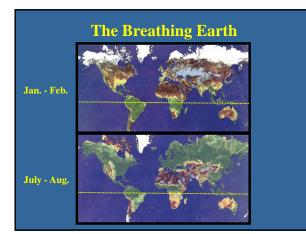


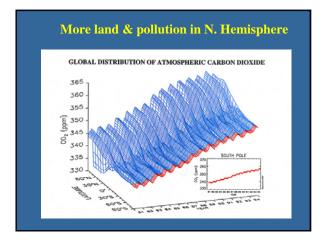


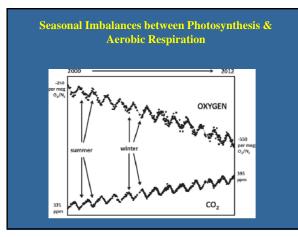

Carbon Cycle

- **Reciprocal Processes:**
- <u>Photosynthesis</u> (P_s)-
- Cellular Respiration (R) -









Carbon Cycle Mean Residence Times

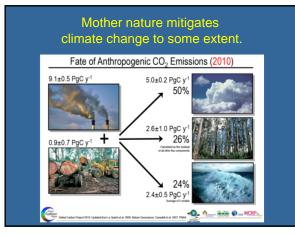
- Oceans ~ 422 years
- Atmosphere ~ 3 years (but atmospheric lifetime > 100 years)
- Land Plants ~ 4.6 years
- At current rates of fossil fuel use, our recoverable supplies will last about 700 years ! (4000 Pg ÷ 6.4 Pg/yr = 625 yrs)

Units are Pg C/yr

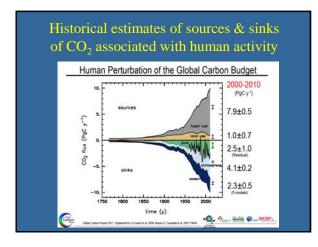
The Carbon Cycle is not Always in Balance

• In the present, inputs of CO₂ > outputs to the atmosphere because ...

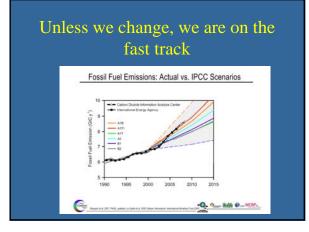
Burning of fossil fuels.


Net destruction of terrestrial vegetation.

- Current imbalance results in rising atmospheric CO₂ concentrations.
- In the past, P_s > R because ...
 Fossil fuel deposits formed.
 Oxygen accumulated in the atmosphere.


The Missing Carbon Sink

6.4	Atmospheric Increase	3.2
1.5	Ocean uptake	2.2
7.9	Total Net Sinks	5.4
	1.5	1.5 Ocean uptake



Summary of Carbon Cycle

- Largest active pool is the ocean.
- Pool on land (plant + soil) ≅ 3x amount in atmosphere
- $P_s \cong R_{total}$
- Soil respiration $\cong 10x$ fossil fuel emissions
- P_s removes 1/6 of the atmospheric pool of CO_2 each year.
- Concentration of CO₂ in the atmosphere is ca. 0.4% per year (ca. 3x10¹⁵ g C/yr)

The Nitrogen (N) Cycle

- Atmosphere is ca. 78 % N₂ but most is unavailable to living things because ...
- N is important because ...
- Microbial processes are important in the steps of the N cycle.

The nitrogen cycle has 5 basic steps
1) <u>Nitrogen Fixation</u>: N₂ => NH₃

Root Nodules on a Legume

Heterocysts in Anabaena Heterocyst

Humans Fix Nitrogen Too !

 $4N_2 + 12 H_2 + catalyst ==> 8 NH_3$

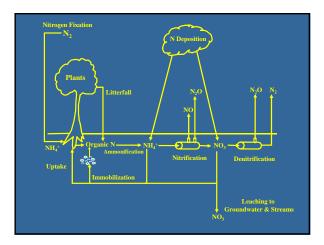
at 500°C & several hundred atmospheres of

Fritz Haber

2) <u>Ammonification</u>: organic N => NH₃

3) <u>Nitrification</u>: $NH_3 \Rightarrow NO_2 \Rightarrow NO_3$

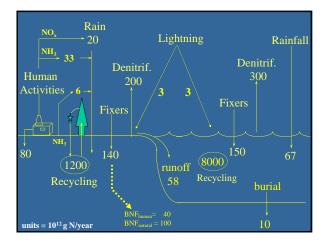
2-step process - each step by different bacteria. Step 1: oxidation of ammonia (NH₃) to


nitrite (NO_2^-) by _____ Step 2: oxidation of nitrite (NO_2^-) to

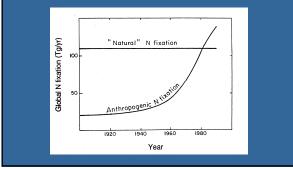
nitrate (NO₃⁻) by _____

Both steps couple E-releasing oxidations to fixation of carbon - <u>chemoautotrophs.</u>

4) <u>Nitrogen Assimilation</u>: NH₃ => organic N NO₃⁻ => organic N


5) <u>Denitrification</u>: NO_3^- or $NO_2^- \Rightarrow N_2$ or N_2O

Active N Pools

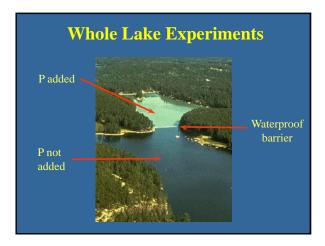

• Atmosphere	3,800,000 x 10 ¹⁵ g N
Ocean	21.000 x 10 ¹⁵ g N

- Soil Organic Matter 95 x 10¹⁵ g N
- Terrestrial Biota
 3.5 x 10¹⁵ g N

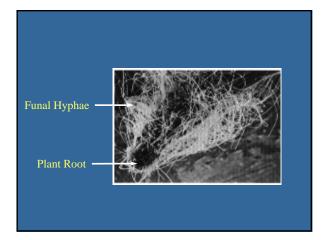
Human Activities Account for More than Half of Total N Inputs on Land

Terrestrial Ecosystems Can be Overfertilized

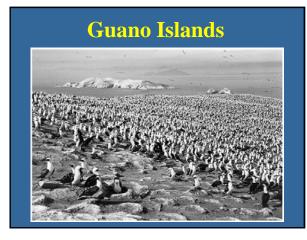
Potential Consequences of N Saturation

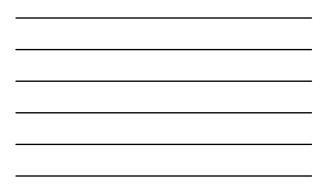

- Increased surface-water NO₃⁻ concentrations.
- Enhanced losses of nutrient cations.
- Soil acidification & greater soluble Al .

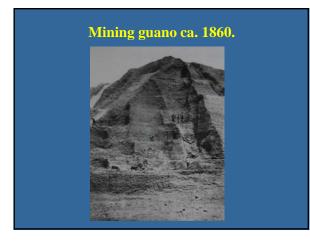
Summary of N Cycle

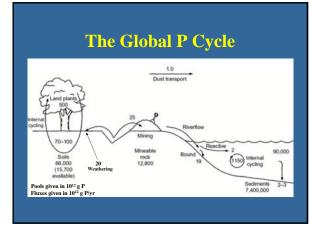

- Largest active pool = N₂ in atmosphere which is 181x > amount in ocean
- N in soil organic matter is 27x > amount in terrestrial biota
- Largest flux = uptake by plants of which almost all is from recycled organic N
- Human activities ≈ 60 % of total inputs to land
- River flow $\approx 20\%$ total inputs to oceans

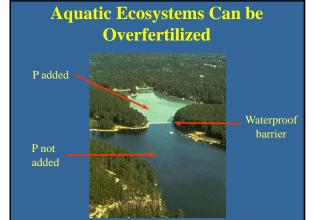
The Phosphorus (P) Cycle

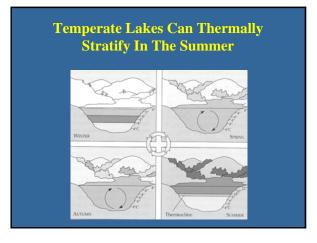

- Example of a <u>sedimentary cycle</u> => no gaseous phase
- P is abundant in soil but in forms that are not readily available to biota
- PO₄-³ is an available form of P
- P is important because ...



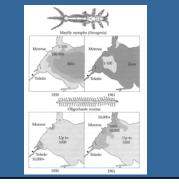




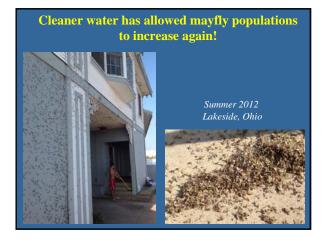



Summary of P Cycle

- Abundant but low availability.
- Weathering of P-rich rock is original source.
- Geologic processes are slow (millions of years) so biota rapidly recycle organic-P.
- Residence time in biota is only a few days in the ocean.


Summary of P Cycle

- Large loss to ocean relative to rate of return to land.
- Losses in runoff are 90% particulate-P
- Mycorrhizae absorption by plant roots
- Mining P-rich rocks is a major source to land.



Eutrophication of stratified shallow lakes can change species composition

